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Abstract. We present a model for the solidification process of two immiscible fluids interacting
repulsively with mobile impurities on a two-dimensional square lattice. In the space of the fluids and
impurity concentrations, the phase diagram exhibits a critical curve separating a percolating from a
non-percolating phase. Estimated values for the fractal dimension and the exponent β of the order
parameter reveal that the critical exponents do not vary along this curve, i.e., they are independent of
the impurity concentration. The universality class is that of the ordinary percolation. On the basis
of the ideas of the dynamic epidemic and invasion percolation models, we also propose a model
that may be relevant to cleaning porous media by fluid injection. An analysis of the acceptance
profile, the fractal dimension and the gap exponent strongly indicate that this model belongs to the
universality class of the ordinary invasion percolation.

1. Introduction

The percolation theory has a fundamental role in the study of many interesting phenomena
occurring in nature [1, 2]. It has been successfully applied to a variety of systems, including
conductivity problems, kinetic gelation, magnetic disordered systems and fluid flow in porous
media [3].

Although originally formulated as a static problem, the percolation concept has also
prospered in dynamical systems. Among several dynamic growth models which deal with
percolating clusters, the epidemic models are particularly significant [4, 5].

Recently, a simple theoretical model, namely the dynamic epidemic model [6, 7], has
been proposed to describe the growth of a solid interface through a liquid in the presence of
impurity particles. A repulsive interaction exists between the solid phase and the particles.
The advancing front obeys the Eden model growth rules [8]. The solid front pushes away the
impurities and may lead to the formation of aggregates which are hindrances to the growth.
Depending on the concentration xI of the impurities, a phase transition may occur separating
a finite from an infinite spreading out of the solid phase.

The idea of the repulsive solid–particle interaction came from the so-called UCJ
mechanism (Uhlmann, Chalmers and Jackson [9]). They found this short-range interaction
in experiments in which a solid front advances through a liquid in the presence of mobile
impurities. Moreover, depending on the solidifying velocity there is a critical value below
which the impurity particles are indefinitely pushed ahead into the liquid, travelling along the
interface. Above this critical value the impurities are trapped in the solid phase.
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The dynamic epidemic model was numerically studied in both two and three dimensions
[6,7]. It exhibits a blocking transition at the values xI = 0.56 and 0.80 for the square and simple
cubic lattices, respectively. These values are quite different from those for the static epidemic
model (i.e., the ordinary site percolation model) which are 0.41 and 0.69 (the complements of
the critical thresholds).

In section 2 we extend the dynamic epidemic model to treat the solidification process of
two immiscible fluids A and B in the presence of mobile impurities. We get the phase diagram
in the concentration space by determining the order parameter. A line of critical points is found.
A careful analysis of the cluster fractal dimensions as well as of the exponent β of the order
parameter does not show any dependence on the concentrations, implying that universality
holds along the critical line. In section 3, we study a different model. It is intended to describe
a process of cleaning a dirty porous medium. The fractal dimensions and the gap exponent
are estimated. They suggest that this system is in the same universality class as the invasion
percolation model.

2. The dynamic percolation model

The lattice model can be defined as follows. First, a fraction xI of the lattice sites are randomly
occupied by impurities. The remaining sites are occupied either by a fluid of kind A with
concentration xA or by a fluid of kind B with concentration xB. Of course, the constraint
xI + xA + xB = 1 always holds. We will assume that these two fluids are immiscible and that
the system is in contact with a thermal reservoir kept at the (higher) solidification temperature
of the fluid A.

The growth process starts by putting, at the lattice centre, a solid unit of kind A. At each
time step, a liquid site of kind A which is in contact with the solid front is randomly chosen and
turned to solid. If liquid sites of kind A are no longer available the solidification process stops.
Let us now describe how the UCJ mechanism of repulsive short-range interactions between the
solid front and mobile impurities is simply introduced in our simulations. When an impurity
is touched by a newly added solid unit, it moves toward a randomly chosen nearest neighbour
(exchanging places with a liquid site A or B) if this action reduces its number of contacts with
the solid front. Otherwise, the impurity remains in the same place.

Besides pushing the impurities, our model has also characteristics peculiar to percolation
problems: the cluster of the solid phase A may span the whole lattice or not. Thus we expect
a critical curve in the plane xI + xA + xB = 1 of the concentration space. Without impurities
(xI = 0), our model reduces to the well known Leath model [4] where fluids of kind A (B)
correspond to the occupied (blocked) sites. Another particular case arises for xB = 0 when
the standard dynamic epidemic model [6] is recovered.

Numerical simulations were carried out on square lattices of size L = 201, 401, 801 and
1601. For each value of xI, we performed a number of experiments sufficient to reduce the
statistical error to less than one per cent. The phase diagram was obtained by determining the
spanning probability, which is the probability that a lattice of linear dimension L percolates
at concentration xA [1]. We say that a system percolates if at least one cluster connects two
opposite frontiers of the lattice. Figure 1 shows the xA-dependence of the spanning probability
for xI = 0.45 and several lattice sizes. In the thermodynamic limit, a well marked phase
transition occurs at some xc

A, i.e., a critical threshold exists setting a continuous phase transition
between two regimes: the percolating and non-percolating phases.

Figure 2 shows the phase diagram in the concentration space. As expected, if xI = 0
the ordinary (site) percolation model is obtained. On the other hand, at xB = 0, the growth
mechanism is that of the Eden model and the standard dynamic epidemic model is recovered.
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Figure 1. The spanning probability as a function of the fluid concentration xA for xI = 0.45 and
several square-lattice sizes. A phase transition occurs at some xc

A.

Figure 2. The phase diagram in the concentration space xI, xA, xB. Only paths on the plane
xI +xA +xB = 1 are thermodynamically allowed. A critical line separates a percolating (grey area)
from a non-percolating phase.

In general, there is a critical curve separating a finite from an infinite (represented by the grey
area in the figure 2) growth phases.

A simple way to characterize the critical clusters is by evaluating their fractal dimensions
[2,10]. To do this, we investigate how the average mass 〈M〉 of the critical percolating clusters



6116 R A Zara and R N Onody

scales with the mean gyration radius 〈Rg〉. The good quality of our data can be seen in figure 3.
The error bars are smaller than the symbols used for the central values. Along the critical line
we found that the values of the fractal dimensions are unique and equal to 1.89—that is, equal
to the critical ordinary percolation value. Inside the percolating region the fractal dimension
like in the Eden model is equal to 2.

3.5 4.0 4.5 5.0 5.5 6.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

slope = 1.89(1)

x
I
 = 0.45

x
c

A
 = 0.43

ln
(<

M
>

)

ln(<R
g
>)

Figure 3. A log–log plot of the average mass versus the mean gyration radius. The slope of the
straight line is the fractal dimension.

As is well known [1], the average density ρ = 〈M〉/L2 is equal to the strength of the
order parameter. This means that near the critical point we have ρ ∼ L−β/ν ∼ ||xA − xc

A||β .
By carrying out simulations very close to this point, we can estimate the critical exponent
β. We have done such a calculation for several concentrations xI and found always the same
value β ≈ 0.15 (see figure 4) which is compatible with the exact value 5/36 for the ordinary
percolation. Together with our results for the fractal dimension, this leads us to conclude that
our model belongs to the ordinary percolation class of universality. Some typical clusters of
the model are shown in figure 5.

3. The dynamic invasion percolation model

Invasion percolation [11] is a theoretical model used to describe fluid–fluid displacements in
porous media. It is a kind of self-organizing criticality [12–14] exhibiting a scale-invariant
behaviour in both space and time.

In computer simulations of the ordinary invasion percolation, we assign a random number
r , uniformly distributed in the range [0, 1], to each lattice site and choose the central site as
the seed of the growth. The perimeter sites of the cluster are identified as the growth sites. At
each growth step, only one site of the perimeter is occupied—that with the smallest associated
random number. The growth process is interrupted after the cluster reaches the lattice boundary.

Here, we implement an invasion percolation model in a porous medium such that a
fraction xI of the pores are occupied by mobile particles of dirty material (impurities). The
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Figure 4. A log–log plot of the average density ρ (averaged out over 1000 instances) against
||xA − xc

A||. The error bars are statistical deviations.

Figure 5. Some typical clusters of the dynamic percolation model at the mobile impurity
concentration xI = 0.15. The black (white) points represent the mobile impurities (solid A)
and dark (light) grey the fluid B (A), respectively. The left (right) figures correspond to runs below
(near) the critical threshold xc

A = 0.61 in an 80 × 80 square lattice.

remaining pores have associated a random number r (also coming from a uniform distribution)
corresponding to the pore’s size. A fluid is injected at the centre of the lattice. From its first-
neighbour empty pores, that with the smallest pore size is chosen to be invaded. This theoretical
procedure mimics what really happens on an experimental level when the fluid flux is very
low. Thus, viscous forces are irrelevant and the flow is dominated by capillary forces. We
will assume that when the fluid touches an impurity a repulsive interaction of the UCJ kind
appears. So, particles of dirty material will be pushed to fill empty pores.

We found a critical value of xc
I above which the invading cluster is completely blocked.

This value coincides with that obtained by Ausloos and Vandewalle [6] for the dynamic
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epidemic model (xc
I 	 0.56 for the square lattice). For xI < xc

I the fractal dimensions of the
invading clusters are all equal and coincident with that of the ordinary invasion percolation.
No dependence on xI was found.

The acceptance profile a(r) is a very useful concept introduced by Wilkinson and
Willemsen [11] to study ordinary invasion percolation. They defined a(r) as the ratio between
the number of random numbers in the interval [r, r + dr] which were accepted into the cluster
and the number of random numbers in that range which became available. In the limit of an
infinite lattice, the acceptance profile tends to a step function with the discontinuity point rc

equal to the critical ordinary percolation threshold pc.
Acceptance profiles can also be calculated in the dynamic invasion percolation model. In

figure 6 we give the dependence of rc on the impurity concentration xI. For fixed values of xI

there is no tuning parameter, but even so the system is critical, indicating that it belongs to the
class of self-organized criticality models.
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Figure 6. The acceptance profile behaviour for different values of xI. The values of rc increase
with xI up to rc = 1, at which point xI = 0.56.

The acceptance profiles can be used to obtain the gap exponent � = γ + β. Following
Wilkinson and Barsony [15], we define the quantities

B1 =
∫ rc

0
(1 − a(r)) dr (1)

and

B2 =
∫ 1

rc

a(r) dr (2)

which represent the deviation of a(r) from the step function. Applying finite-size arguments
it can be shown that

B1 = B2 ≈ 〈M〉−1/� (3)

where 〈M〉 is the mean cluster mass. The logarithm plot is shown in figure 7 for impurity
concentration xI = 0.41.
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Figure 7. The slope of the curve is associated with the gap exponent. The points shown correspond
to lattice sizes 101, 201, 401 and 801.

For xI = 0.20, 0.35, 0.41 we found 1/� 	 0.43(3), 1/� 	 0.41(3), 1/� 	 0.42(3),
respectively. These values are in reasonable agreement with the exact value for the ordinary
percolation model (1/� = 36/91 	 0.40). Some typical clusters of the model are shown in
figure 8.

Figure 8. Some typical clusters of the dynamic invasion percolation model simulated at
concentrations below (left) and above (right) the critical threshold xc

I = 0.56. The black and
white points correspond to the impurities and the invader fluid, respectively.

4. Discussion

We present a dynamic percolation model and a dynamic invasion percolation model. The
first is a solidification model of two immiscible fluids A and B in the presence of impurities
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and in contact with a thermal reservoir at the melting point of fluid A. The phase diagram
in the concentration space exhibits a critical percolation curve separating a percolating phase
from a non-percolating phase. Our results firmly indicate that the critical exponents do not
vary along this curve and, moreover, that the universality class is simply that of the critical
ordinary percolation. In future works, it would be interesting to introduce a real temperature
parameter (through energy interactions between fluids A and B and the impurity) in order to
study the system behaviour when the (smaller) solidification temperature of the second fluid
B is approached. If the solid A does not percolate and if the concentration xI of impurities is
not too high, then a new percolation phase transition can exist (but now at the solidification
point of the fluid B). Certainly, for a given system (i.e., for fixed concentrations of impurities
and of fluids A and B) these two percolation phase transitions are mutually exclusive. Note
that this second transition would occur under a quite different condition: fluid B is in contact
with immobile clusters (or isolated sites) of solid A and with partially mobile impurities (since
now they can jump only to sites filled by the unfrozen fluid B).

The second model corresponds to a process of injecting fluid in a dirty porous medium.
Smaller pores are occupied first and dirty particles are pushed away. An analysis of the fractal
dimensions and acceptance profiles as well as of the gap exponent strongly suggested that this
model is indeed a critical case. Were the repulsive interaction between the fluid and the dirty
material a little stronger (to push not only a few particles but a whole cluster of dirty particles),
then certainly this model would be a good candidate for describing a process of cleaning a dirty
porous medium. Further studies of the model may, for example, introduce a new dynamics
with successive cycles (as has been done recently for the dynamic epidemic model [16]). Such
an investigation might be relevant to explaining how salt is left behind by water flowing in a
porous system like cement.
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